Molecular disease monitoring using circulating tumor DNA in myelodysplastic syndromes.

نویسندگان

  • Paul Yeh
  • Michael Dickinson
  • Sarah Ftouni
  • Tane Hunter
  • Devbarna Sinha
  • Stephen Q Wong
  • Rishu Agarwal
  • Ravikiran Vedururu
  • Kenneth Doig
  • Chun Yew Fong
  • Piers Blombery
  • David Westerman
  • Mark A Dawson
  • Sarah-Jane Dawson
چکیده

The diagnosis and monitoring of myelodysplastic syndromes (MDSs) are highly reliant on bone marrow morphology, which is associated with substantial interobserver variability. Although azacitidine is the mainstay of treatment in MDS, only half of all patients respond. Therefore, there is an urgent need for improved modalities for the diagnosis and monitoring of MDSs. The majority of MDS patients have either clonal somatic karyotypic abnormalities and/or gene mutations that aid in the diagnosis and can be used to monitor treatment response. Circulating cell-free DNA is primarily derived from hematopoietic cells, and we surmised that the malignant MDS genome would be a major contributor to cell-free DNA levels in MDS patients as a result of ineffective hematopoiesis. Through analysis of serial bone marrow and matched plasma samples (n = 75), we demonstrate that cell-free circulating tumor DNA (ctDNA) is directly comparable to bone marrow biopsy in representing the genomic heterogeneity of malignant clones in MDS. Remarkably, we demonstrate that serial monitoring of ctDNA allows concurrent tracking of both mutations and karyotypic abnormalities throughout therapy and is able to anticipate treatment failure. These data highlight the role of ctDNA as a minimally invasive molecular disease monitoring strategy in MDS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Expression and Methylation Pattern in HRK Apoptotic Gene in Myelodysplastic Syndrome

Myelodysplastic syndromes (MDSs) are a clonal bone marrow (BM) disease characterized by ineffective hematopoiesis, dysplastic maturation and progression to acute myeloid leukemia (AML). Methylation silencing of HRK has been found in several human malignancies. In this study, we explored the association of HRK methylation status with its expression, clinical parameters and MDS subtypes in MDS pa...

متن کامل

Molecular analysis of chromosome 20q deletions associated with myeloproliferative disorders and myelodysplastic syndromes.

Acquired deletions of the long arm of chromosome 20 are found in several hematologic conditions and particularly in the myeloproliferative disorders and myelodysplastic syndromes. The spectrum of diseases associated with 20q deletions suggests that such deletions may mark the site of a tumor suppressor gene that contributes to the regulation of normal multipotent hematopoietic progenitors. We p...

متن کامل

Liquid Biopsy as a Minimally Invasive Source of Thyroid Cancer Genetic and Epigenetic Alterations

In the blood of cancer patients, some nucleic acid fragments and tumor cells can be found that make it possible to trace tumor changes through a simple blood test called “liquid biopsy”. The main components of liquid biopsy are fragments of DNA and RNA shed by tumors into the bloodstream and circulate freely( ctDNAs and ctRNAs). tumor cells which are shed into the blood (circulating tumor cells...

متن کامل

Peripheral blood cell‐free DNA is an alternative tumor DNA source reflecting disease status in myelodysplastic syndromes

Genetic alterations in myelodysplastic syndromes (MDS) are critical for pathogenesis. We previously showed that peripheral blood cell-free DNA (PBcfDNA) may be more sensitive for genetic/epigenetic analyses than whole bone marrow (BM) cells and mononuclear cells in peripheral blood (PB). Here we analyzed the detailed features of PBcfDNA and its utility in genetic analyses in MDS. The plasma-PBc...

متن کامل

Dynamic monitoring of circulating tumor DNA in non-Hodgkin lymphoma.

Response assessment in lymphoma relies on imaging scans that do not capture biologic processes at the molecular level. Monitoring circulating tumor DNA (ctDNA) with next-generation sequencing-based assays can detect recurrent disease prior to scans and "liquid biopsies" for somatic mutations address tumor heterogeneity, clonal evolution, and mechanisms of resistance to guide precision treatment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 129 12  شماره 

صفحات  -

تاریخ انتشار 2017